
1D Function Approximation
Polynomials, Rational Functions, and the Bag of Tricks to Maximize Accuracy Per 

Computation



How do we get the numerical value of 
functions at every value of x?
• For polynomials, we can multiply and add

• 𝑃𝑁 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑁𝑥

𝑁

• For rational functions, we multiply and add, then divide

• 𝑅 𝑁/𝑀 𝑥 =
𝑃𝑁(𝑥)

𝑄𝑀(𝑥)
=

𝑎0+𝑎1𝑥+𝑎2𝑥
2+⋯+𝑎𝑁𝑥

𝑁

1+𝑏1𝑥+𝑏2𝑥
2+⋯+𝑏𝑀𝑥

𝑀

• That’s all arithmetic (PEMDAS) on numbers that computers do in hardware, what about everything else?

• Trigonometric functions at not nice angles?

• Exponential functions with irrational base or exponent?

• Logs?

• Roots of real numbers?

• “Special” functions?

• Answer: we approximate using the top two and characterize the approximation error! If it’s the same order as finite precision rounding errors (or we 
can otherwise tolerate the error at the system level), then we’re good to go.

• Why? Our CPUs/GPUs/TPUs/DSPs/FPGAs can do multiply-add-divide in hardware, other functions are far less common

• Absolute approximation error: 𝑒 𝑥 = 𝑃𝑁 𝑥 − 𝑓(𝑥) or 𝑒 𝑥 = 𝑅[𝑁/𝑀] 𝑥 − 𝑓(𝑥)



Motivation

• Its cool to know how you really calculate something like sine or erfc as accurately 
as you like

• But this also will demonstrate the path to efficiently calculate those things on real 
hardware for speed

• Specifically, there’s one NN activation function that’s everywhere these days 
that’s based on special functions derived from the Gaussian function: GELU, more 
on this near the second half of the talk



Minimizing Local Error – Polynomials

• Let's say I really care about 𝑓 𝑥 = log(𝑥 + 1) around 𝑥 = 0

• Near zero -> local error

• I’ll use 𝑥 = 0 like a reference point because you can always do 𝑔 𝑥 = 𝑓 𝑥 − 𝑥0 to shift around that function and do the same analysis on 𝑔

• What’s the best constant to use to approximate 𝑓? 𝑓 0 = 0, so zero is a good first approximation, P0 𝑥 = 0

• What’s the best linear function around 𝑓 0 ?

P1 𝑥 = 𝑓 0 + 𝑓′ 0 𝑥

• Best quadratic?
P2 𝑥 = 𝑓 0 + 𝑓′ 0 𝑥 + 𝑓′′ 0 𝑥2

• And so on; this process is called truncating the Taylor series expansion, is based on matching the orders of derivatives between the function and its 
approximation, and the results are the Taylor polynomials

• The error has an explicit formula in terms of integrals, and with some ingenuity you can often estimate a usable upper bound on the error

• For the logarithm, the derivatives require just arithmetic so no issue in evaluating the coefficients by hand (or CAS), then a computer algorithm would 
use these hardcoded coefficients



Minimizing Local Error –
Polynomials

As you go higher in order, the approximation gets better in a neighborhood of x=0. 
For well-behaved functions f, you can show that for every nonzero positive error 
upper bound, there exists a polynomial order large enough to guarantee the error 
is within that bound on the desired domain. That’s the idea of “convergence”. For 
computer evaluation, you can take the error bound to be on the order of rounding 
error or otherwise acceptable system error.



Minimizing Local Error – Rational Functions

• Derivative matching at a single point works for rational functions too

• That’s called the Padé approximation technique; example:

• 𝑅 1/1 𝑥 = 𝑅 𝑥 =
𝑎0+𝑎1𝑥

1+𝑏1𝑥

• For 𝑓 𝑥 = log(𝑥 + 1) around 𝑥 = 0 we get

𝑅 𝑥 =
𝑥

1 +
1
2
𝑥



Minimizing Local Error –
Rational Functions

Convergence story is even better for Padé. For a given number of 
free parameters, a Padé approximant will usually achieve smaller 
error on a larger domain. For example, here, [1/1]-Padé and 
quadratic Taylor both have three coefficients, but Padé gets a 
lower error across the whole domain of interest.



Global or Interval 
View of Error

• Taylor and Padé are constructed to 
be good at one point and kind of 
naturally are good at nearby points 
by smoothness

• One point is chosen to be special

• Thinking of approximations that 
are equally good at several points 
on a domain leads to interpolation

• Approximations that are equally 
bad everywhere leads to minimax 
approximants



Interpolation

Say I want to pin the error to be zero at several points, so I use a piecewise function that 
goes between those points

The error isn’t zero at one point, its zero at several points!

This is domain decomposition + linear polynomial fit on each interval

And with 4 intervals, each with 2 coefficients, we get the best fit yet (previous Padé was 
e(x)<0.3 on the whole interval)



Polynomial 
Interpolation

Polynomial interpolation: matches function values at several points on the domain instead of derivatives at one point 
(Taylor).

Quadratic example: endpoints and a point in the middle can have exactly zero error. The green error is interesting…

It gets lowest error out of the three, but can I do better?

You can distribute the errors more fairly such that the error equioscillates! That is the minimax polynomial, minimizes the 
maximum error.

Finding it is an optimization problem: find the set of interpolating points that minimizes the maximal error / makes the error 
equioscillate



Note on the Remez Exchange
• The most famous method to calculate minimax polynomial 

approximations is known as the Remez exchange

• It is an iterative algorithm that solves the optimization problem of 
finding the interpolation points that give you the minimax polynomial

• Pick some points, do a linear system solve to find a polynomial fit 
that tries to make those the points of maximal error, find the actual 
points of maximal error with a rootfinding algorithm, replace the 
points, repeat

• DSP side note: Jim McClellan (my intro DSP prof. at GT!) figured out 
that if you apply the idea of fitting a polynomial that equioscillates
around target values to the frequency response of a filter, you can 
inverse transform the polynomials to FIR taps. That makes a filter 
with a desired frequency response with a controllable error around 
that desired response. Want less error, use higher order fit / more 
taps. He applied the Remez exchange to solve for the best points in 
frequency to interpolate between. McClellan’s advisor at Rice was 
Thomas Parks. Remez exchange applied to FIR filter design = Parks-
McClellan filter design algorithm.



Rational Function 
Interpolation / Minimax

Interpolation idea holds for rational functions too; use DOF to get zero error on a set of interpolating points instead of 
matching derivatives at a single point (Padé). The equations get more complicated, but it is doable. Or you can just use a 
generic nonlinear least-squares optimizer to solve the interpolation problem (Levenberg-Marquardt is a popular choice).

Similarly, minimax can be done for rational interpolants by more layers of iteration / optimizer. You can imagine sweeping 
the middle interpolation point below between -0.55 and -0.25 to find the minimax [1/1]-rational fit



Recap – For Same Number of DOF…

• (And a boatload of caveats on the function well-behavedness)

• Rational fit gets less error than a polynomial

• Requires division, could be a dealbreaker depending on hardware

• Interpolants get less error than derivative matching at a single point (Taylor and Padé)

• The only reason to use Taylor or Padé is if what your doing is highly sensitive to derivatives/gradients, not just the function 
values

• Minimax gets the least error among all interpolants 

• So: minimax rational interpolant is the most accuracy per DOF you can get

• Most complicated to find the coefficients

• Algorithm idea: 4 layers of optimization! One outermost optimizer to move the interpolation points (the exchange in Remez 
exchange), one optimizer to find the coefficients that fit the interpolation points (e.g., Levenberg Marquardt), one to find the
equioscillation error value (fixed point iteration), and an innermost optimizer to find the extrema of the error (rootfinding)!



Bag of Tricks

• Almost every numerical code for “special functions” uses a mix of the following

• What function to model?

• Symmetry

• Domain mapping

• Pulling out asymptotics

• Domain decomposition

• Let’s do a case study that is relevant to recent ML models:

𝑓 𝑥 = GELU(𝑥)



What’s a GELU 
(“Gaussian error linear 
unit”)
• Like ReLU but smooth everywhere

• Looks like ReLU far away from x=0

• Has negative outputs near zero for negative inputs near zero

• Wait isn’t that swish?

• They both have the same structure 

• 𝑓 𝑥 = 𝑥 ⋅ 𝑠(𝑥)

• But with different sigmoidal functions (generically meaning 
S-shaped curves)

• One uses the logistic function, the other uses the Gaussian 
error function

• 𝑓 𝑥 = GELU 𝑥 = 𝑥 ⋅ Φ(𝑥)

• Φ 𝑥 =
1

2
+

1

2
erf

𝑥

2

• erf 𝑥 =
2

π
0׬
𝑥
𝑒−𝑡

2
𝑑𝑡

Numerical approximation of integrals is another talk
Its surprisingly interrelated with the methods we’re talking about
Slow but accurate algorithms for that: sum up the area under the curve + theoretical 
error bounds; or use the Taylor series + remainder bounds (derivatives are in terms 
of exponentials only)
Interpolate between the the slow+accurate points for a fast method



Bag of Tricks – What 
Function to Model?

• ReLU looks an awful lot like GELU

• It sure looks like ReLU is GELU, plus a 
little bit

• 𝑓 𝑥 = ReLU 𝑥 − GELU(𝑥)

• We can approximate f, and when it 
comes time to evaluate, we do 
GELU 𝑥 = ReLU 𝑥 − 𝑓 𝑥

• ReLU is easy to evaluate, and 
subtraction is cheap



Bag of Tricks –
Symmetry

• That function appears to have even 
symmetry, 𝑓 𝑥 = 𝑓 −𝑥
• Can be proved

• So, we shouldn’t fit a polynomial to 
all of it, we should just fit for x>0 
and return 𝑓 𝑥

• Another symmetry trick: only angles 
in [0,

𝜋

2
] are needed for trig 

functions, the rest are reflections 
and shifts



Bag of Tricks –
Domain Mapping

• That’s a long flat tail decaying to 0 at ∞

• What if I took [0,∞) and squashed it down to a finite 
interval, say [0,1)?

• Domain mapping (change of variable): 

𝑔 𝑦 = 𝑓 tan
𝑦𝜋

2

• We’ve used the singularity in the tan to make sure that 
as y approaches 1, the argument of f goes to infinity

• That maps the semi-infinite interval into a finite 
one

• Generally, there’s lots of choices and it affects 
convergence rates. Boyd’s “Chebyshev and Fourier 
Spectral Methods” is the best reference I know of. I 
picked tan because it worked for my experiments.



Bag of Tricks – Pulling 
Out Asymptotics

• That function is VERY flat near 1, too flat for a 
polynomial fit to be very good. That was originally the 
tail at infinity.

• OTOH, you can show that

𝑓 𝑥 ≈
𝑒−

𝑥2

2

2𝜋
, 𝑥 ≫ 0

• That’s based on asymptotic expansions, a talk for 
another day

• What if I factor out that behavior and say

𝑓 𝑥 =
𝑒−

𝑥2

2

2𝜋
ℎ 𝑥

• And then model ℎ 𝑥 (with the same domain mapping 
trick)

Lots of details skipped about how to evaluate h since it looks like you’d have 
exponential blow up if you naively multiplied, but this all simplifies to a well-
known scaled complementary error function, erfcx and I used scipy
implementation of that to make the plots.
Of course, that implementation uses the same tricks we’re talking about!



Bag of Tricks – Domain 
Decomposition

• Instead of modeling the whole function on 
[0,1), we can chop up the domain into 
smaller intervals (like we did with linear 
interpolation) and fit lower order 
polynomials or rational functions to each 
piece

• Adaptive algo:
• Visit each domain and fit as best you 

can with the order you want
• If the error on a domain is not 

tolerable, split that domain in half and 
revisit the halves as in the previous 
step



Bag of Tricks – Recap

• Bag of tricks took us from the top plot to the 
bottom plot; the thing on the bottom requires 
far fewer DOF for a desired accuracy

• And its effectively valid on the whole real line

• Evaluation would look like:

GELU 𝑥 = ReLU 𝑥 −
𝑒−

𝑥2

2

2𝜋
ℎ

2 atan 𝑥

𝜋
• h is a low order interpolating polynomial or 
rational, or a domain-decomposed sequence of 
those things on the interval [0,1)

• If ReLU, subtraction, gaussian evaluation, 
abs, atan are cheap, this will go fast, and you 
only used your DOF to model the critical piece



GELU Results
Minimax polynomial fit of order 8 fits GELU with error<6e-5 
over the entire real line. Didn’t use domain decomposition 
trick.



Summary / Conclusions

• Polynomial and rational approximants are ways to approximate functions

• Taylor and Padé approximants match derivatives at a single point

• Interpolants have exactly zero error at the interpolation points and oscillate in between

• Minimax functions (both polynomials and rational) are improvements of the interpolant idea that find the best set of points to interpolate through to minimize the maximum 
error

• This is how you get the most accuracy per DOF, but if you can tolerate more DOF, interpolants on a pre-determined grid (i.e., Chebyshev nodes) perform well enough

• Rational functions get better error per DOF than polynomials

• But are harder to construct and require division, not just *+

• You can get less error per DOF by carefully selecting what function to approximate, i.e., really separate out the easy to compute parts from the harder to compute parts.

• In our example, subtracting the ReLU and factoring out the asymptotic really makes a huge difference

• Using symmetry makes sure you’re only modeling the portion of the function that can’t be described by reflections and shifts of other parts

• Domain mapping can help you get an approximation that’s good over unbounded intervals

• Works for monotonic and bounded functions that converge reasonably quickly

• Notably doesn’t work well for functions that wiggle at infinity like sinc or Bessel J functions because infinite number of wiggles get mapped to finite domain

• Domain decomposition guarantees you can use low order approximants on each interval

• At the cost of look-up table type calculations to decide which sub-domain your input falls into


	Slide 1: 1D Function Approximation
	Slide 2: How do we get the numerical value of functions at every value of x?
	Slide 3: Motivation
	Slide 4: Minimizing Local Error – Polynomials
	Slide 5: Minimizing Local Error – Polynomials
	Slide 6: Minimizing Local Error – Rational Functions
	Slide 7: Minimizing Local Error – Rational Functions
	Slide 8: Global or Interval View of Error
	Slide 9: Interpolation
	Slide 10: Polynomial Interpolation
	Slide 11: Note on the Remez Exchange
	Slide 12: Rational Function Interpolation / Minimax
	Slide 13: Recap – For Same Number of DOF…
	Slide 14: Bag of Tricks
	Slide 15: What’s a GELU (“Gaussian error linear unit”)
	Slide 16: Bag of Tricks – What Function to Model?
	Slide 17: Bag of Tricks – Symmetry
	Slide 18: Bag of Tricks – Domain Mapping
	Slide 19: Bag of Tricks – Pulling Out Asymptotics
	Slide 20: Bag of Tricks – Domain Decomposition
	Slide 21: Bag of Tricks – Recap
	Slide 22: GELU Results
	Slide 23: Summary / Conclusions

