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Abstract— A spectral domain method is presented to calculate the potential of a vertical
dipole in a multilayered medium as a model of long-range radio propagation. The spectral domain
Green’s function (SDGF) for structures with up to hundreds of thousands of layers is calculated
using an efficient matrix formulation, thus enabling simulation of continuously stratified media.
The SDGF is sampled to perform pole/residue-extraction using contour quadratures and to
perform a novel asymptotic Filon-Clenshaw-Curtis (FCC) quadrature to calculate the far-field
Green’s functions. The near-fields are directly calculated using an adaptive Clenshaw-Curtis
quadrature without pole-extraction. Results of numerical simulations are presented in the case
of a graded-index waveguide and an atmospheric gradient-layer above a realistic lossy ground.

1. INTRODUCTION

Electromagnetic (EM) modeling of refractive and terrain effects over long links has been mod-
eled by ray tracing [1, 17, 20] or by using the parabolic/paraxial wave equation [3, 4, 7]. These
methods are approximations to the wave propagation physics of Maxwell’s equations, which can
limit their applicability. Other approaches have included the moving-window finite-difference time-
domain (MWFDTD) method [14, 16, 21, 22]. While capturing the relevant physics, MWFDTD
leaves something to be desired with respect to intuition about the fields; a list of field strength
values is not readily understood in terms of propagation mechanisms such as direct waves, reflected
waves, interface/ground waves, and guided propagation modes.

On the other hand, the theory of Sommerfeld integrals (SIs) and spectral domain Green’s func-
tions (SDGFs) in multilayered media has been used in the simulation of printed circuit board (PCB)
structures such as transmission lines and antennas [8]. The SDGF/SI technique expresses the EM
fields as SIs, which must be evaluated numerically using a variety of methods [2, 13, 15, 18]. With
certain approaches, the solutions decompose into terms that directly correspond to the aforemen-
tioned propagation mechanisms. The key contribution of the present work is the application of
these rigorous full-wave techniques to long range radio frequency (RF) propagation. Quadrature
methods used for PCBs are not directly applicable because of the differences in length scales in-
volved. We therefore use novel asymptotic quadrature to calculate far-fields, an approach that has
not, to the best of our knowledge, been attempted for RF propagation before.

2. ATMOSPHERIC AND EM MODEL

The problem geometry is a non-magnetic, multilayered dielectric material bounded by two half-
spaces with interfaces parallel to the xy-plane that contains a z-directed, time harmonic (e−jωt

time dependence) dipole radiator at a height z′ above the origin, as in Figure 1. Each layer is
homogeneous with index of refraction n` =

√
ε0εr`, where εr` is the relative permittivity of the `th

medium and ε0 ≈ 8.85418782×10−12 F/m is the permittivity of free space. The media wavenumbers
are k` = n`k0, k0 = 2πf/c0, f is the frequency of the wave, and c0 = 299, 792, 458m/s is the speed
of light in vacuum. The EM fields in this geometry can be expressed in terms of only the z
component of the magnetic vector potential, Az(ρ, z, z′), where ρ is the xy-distance away from the
dipole and z is the height above the origin. Az obeys a forced wave-equation in the source layer,
and an unforced one in the others. The equation reduces to the 3D Helmholtz equation under
harmonic time dependence, which is indicated in Figure 1.

The spatial domain potential can be shown to admit a spectral (Sommerfeld) integral represen-
tation given by

Az(ρ, z, z′) =
∫ ∞

0
Ãz

(
kρ, z, z′

)
J0(kρρ)kρ dkρ, (1)
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Figure 1: A dipole radiates inside layers of dielectric material. There are L layer interfaces, and L + 1 layers
including the top and bottom semi-infinite half-spaces.

where J0 is the Bessel function of the first kind and order zero and kρ is the radial wavenumber of
a spectral component. The SDGF Ãz is split in a piecewise manner into functions in each layer,
noted as Ãz` for ` = 1, 2, . . . , L + 1. These functions obey a 1D Helmholtz equation in each layer,

∂2Ãz`

∂z2
+ k2

z`Ãz` =




−µ0Ĩz0

δ(z−z′)
4π2 , in source layer

0, in other layers,
(2)

where Ĩz0 is the complex magnitude of the current flowing in the dipole, µ0 = 4π×10−7 H/m is the
permeability of free space, and in each layer the z wavenumber is given by the auxiliary relationship
kz` =

√
k2

` − k2
ρ. Equation (2) is to be solved in all layers simultaneously for a given kρ. Then

Equation (1) is calculated by numerical quadrature over various values of kρ.

3. SPECTRAL DOMAIN GREEN’S FUNCTION SOLVER

The general solution to Equation (2) is

Ãz` = j
µ0Ĩz0

8π2
×





ejkz`|z−z′|

kz`
+ R+

` ejkz`(z−z`−1) + R−
` e−jkz`(z−z`), in source layer

R+
` ejkz`(z−z`−1) + R−

` e−jkz`(z−z`), in other layers,
(3)

where R±
` are generalized reflection coefficients in each layer that have to be fixed by boundary

conditions. The boundary conditions are that the tangential EM fields have to be continuous at the
layer interfaces, and that there are no incoming waves (R+

1 = R−
L+1 = 0, the Sommerfeld radiation

condition). Applying these to Equation (3) reduces the problem to a linear system of equations for
the R±

` coefficients, the exact details of which are to follow in a future publication. The system of
equations is sparse: each equation involves only four of the 2L unknowns. The sparse system can
be assembled into a 2L×2L pentadiagonal matrix with at most (10L−6) nonzero entries out of the
full 4L2. The memory requirements for large numbers of layers in the structure are not prohibitive.
Optimized algorithms exist for solving pentadiagonal systems; this leads to O(L) time-complexity
for solving for R±

` . At the time of writing, a typical computer can solve systems of L ∼ 100, 000
layers in ∼ 1 second. Once the matrix equation is solved for the R±

` , the SDGF can be evaluated
at arbitrary heights z using Equation (3). The matrix is formed and solved, and the SDGF is
evaluated at multiple heights each time the quadrature routines of the next section require samples
from the SDGF, which happens during both pole-extraction and asymptotic quadrature.

4. QUADRATURE OF THE SPECTRAL DOMAIN GREEN’S FUNCTIONS

SIs are considered to be difficult to numerically integrate due to their slow decay and oscilla-
tions [2, 12, 13, 15, 24]. The slow decay is from poles on or near the real kρ-axis in the SDGF, which
degrade the ability of numerical integration algorithms to converge. The oscillations are from the
the Bessel function J0(kρρ), which oscillates more rapidly as ρ increases. Conventional quadratures
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have to calculate more points from the integrand/SDGF as the range increases to resolve the details
of the Bessel function. Far-field calculations are therefore time-consuming and intensive. In this
work, the slow decay and rapid oscillation problems are handled using two separate techniques, one
well established, and the other novel.

4.1. Handling Slow-decay with Pole Extraction
Poles and residues are extracted from the SDGF and analytically integrated using the residue
theorem. An effective search algorithm based on complex contour integrals, which automatically
finds the pole wavenumbers and residues, has been described in the literature [9, 13]. In the present
work, the poles are located by refining user-provided initial guesses with a direct search optimization
and then contour integrals are used to calculate residues. These are approximated by an adaptive
Gauss-Kronrod quadrature adapted from [19, 23]. The residues at all desired heights are calculated
in parallel by the chosen Gauss-Kronrod algorithm. The poles are known to come in opposing pairs,
±kp, so the residue theorem is applied to SIs of the form

∫∞
0

1
k2

ρ−k2
p
J0(kρρ)kρ dkρ = jπ

2 H
(1)
0 (kpρ),

where the pole is at kρ = kp, and H
(1)
0 is the Hankel function of the first kind and order zero.

4.2. Handling Oscillatory Integrands with Filon-like Asymptotic Quadratures
The standard approach to quadrature of oscillatory integrands is to sample them on enough points
to resolve the oscillations and then approximate the integral as a weighted sum of the sampled
values. For the present case this would mean that the number of SDGF samples would increase
in proportion to the range ρ. Calculation of far-fields would require more computational effort
than the near-fields. However, there are several families of asymptotic quadratures that increase
in accuracy as the oscillation increases [10, 11]. The method used presently is the Filon-Clenshaw-
Curtis (FCC) rule [5, 6]. Although designed for complex exponential oscillation, far-field SIs can be
adapted for the FCC in the following way. Since we’re interested in asymptotic results, the Bessel
function is replaced by its asymptotic expansion in Equation (1), giving

Az(ρ, z, z′) ≈
√

1
2πρ

∫ ∞

0
Ãz

(
kρ, z, z′

) (
ejkρρ−j π

4 + e−jkρρ+j π

4

)√
kρ dkρ, (4)

which can be broken up into two integrals, each of which has a form that is directly amenable
to FCC quadrature after the semi-infinite interval is truncated to a large finite value. Finite
truncation is justified physically because the pole-extracted SDGF decays exponentially beyond
the largest material wavenumber and the rapid spatial oscillations of large wavenumbers are known
to contribute only to the near-field singularity; the corresponding waves do not propagate into the
far-field.

5. NUMERICAL EXPERIMENTS

The method presented is general, and could be applied to any multilayered problem. As a proof-
of-concept, consider a PCB-type example in which a copper substrate has a graded-index material
coated on it, with a linear gradation of 10% over ten wavelengths. A plot of the extracted guided
mode potentials as a function of height and range appears in the top panel of Figure 2. There are
seven poles corresponding to guided propagation in the structure. It is clear from the plots that
the structure acts as a waveguide, trapping the energy in the refractive gradient. In this example,
the source dipole is 3.1123 wavelengths above the substrate. The lower panel of Figure 2 is a plot
of ray paths that propagate in the same gradient over a reflective ground plane. The two plots
compare favorably in terms of the distance scale of the modal “skip zones.”

Another numerical example appears in Figure 3, with the top panel representing a dipole radi-
ating above earth with εr = 15 and a conductivity of σ = 12× 10−3 S/m in a strong gradient, with
n(z) = 1 + e−z/10 above ground. While this is an unusually strong gradient for atmospheric cases,
it is an exaggerated example to illustrate the effects of propagation through refractive gradients at
ranges that can be easily visualized. For more realistic gradients, the effects are apparent farther
away from the dipole. Because the FCC quadrature becomes more accurate farther away, and there
is no additional computational cost of increasing range, there is no inherent problem with calculat-
ing extremely far fields, only one of visualizing the long length scales in the kinds of plots presented.
Log-scaled line plots can be appropriate, but we find the visualization of the figures presented more
illustrative. The visualized potential is calculated by the sum of guided modes and the asymptotic
FCC quadrature result for ρ > 20λ0 and by a direct Clenshaw-Curtis quadrature for ρ ≤ 20λ0. The
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Figure 2: A dipole radiates in a layered coating on a copper substrate at 5.8GHz. The potential Az(ρ, z) is
visualized on a decibel scale.

Figure 3: A dipole radiates in two similar scenarios. The top panel is using the SDGF/SI method in an
actual scenario and the bottom panel is using image theory in an idealized scenario.

fact that there is no discernible discontinuity in the fields at ρ = 20λ0 is evidence of the accuracy
of the far-field approximation and FCC quadrature. The lower panel of Figure 3 is a comparison
with a simplified environmental model that can be solved using image-theory, a technique that is
widely used by communications engineers as the “two-ray” model. The differences between the two
are apparent at the surface level, where the two-ray model can be said to break-down.

6. CONCLUSION

A direct method for calculating EM fields in multilayered media based on SDGFs and quadrature
of SIs has been presented. Application of asymptotic quadratures to SI problems is novel to our
knowledge. Although the technique is conceived of as a method for simulating long range radio
propagation near ground level, it is applicable to general EM propagation in multilayered media.
Initial testing indicates agreement with the physics; indeed, the calculated fields do solve Maxwell’s
equations and boundary conditions. Future directions include careful validation against other
models and measurements, exploring enhancements to speed convergence, formulating the solution
for horizontal dipoles, and finally handling terrain through boundary-integral/scattering methods.
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